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SUMMARY

The objectives of this program were to: 1) perform a literature search on the weld-

ing and inspection of 2219-T81 aluminum alloy, 2) weld, by the industry standard

methods, the 0.063-inch sheet and 1.0-inch plate material, and 3) perform mechani-

cal properties static fracture, and cyclic flaw growth tests on the base material,

welded, and repair welded sheets and plates.

A literature search and industry survey were performed and reported in the Interim

Report (NASA CR-72097 of January 1967). The plate and sheet were welded using

automatic GTA (gas-tungsten-arc, sometimes called TIG) weld techniques and manual

repair weld techniques. The fracture characteristics were studied at room tempera-

ture, -320 and -423 ° F by locating notches and cracks in the parent material, heat-

affected zone, fusion line, and the center of the weld metal. Mechanical properties

of the various zones were obtained by tensile tests utilizing small strain gages.

Welding causes a large reduction in yield strength for 2219-T81 sheet and plate

but only a modest reduction in ultimate strength. In general, the static toughness

properties of the base material sheet and plate increase with a reduction in tempera-

ture. However, the toughness in the center of the weld shows a significant decrease

between -320 ° and -423°F in both plate and sheet.

The cyclic crack or flaw growth for 2219-T81 is somewhat erratic for automatic

welded material and is very erratic for repair welded material.

p_cC_:DING PAGE BLAI',IK NOT [-ic_,,_.
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I_NTRODUC_ON AND BACKGROUND

Although a substantial amount of data has been generated in the area of fracture

mechanics in recent years, most of this information has been restricted to parent

metal investigations at room temperature. The American Society for Testing and

Materials (ASTM) has made recommendations for the specimen configuration of

fracture screening specimens (References 1 and 2) at room temperature. These

recommendations were primarily concerned with center-notched plane stress speci-

mens and single-edge-notched tensile specimens that made no attempt to simulate

flaws found in actual structures. At the same time, Tiffany, Lorenz, and Hall at

the Boeing Company had determined that the flaw most observed in aerospace appli-

cations is a surface crack resembling a thumb nail. (Reference 3). Such a crack,

in a rather thick material, can be quite serious since the crack depth is difficult to

determine and is likely to cause catastrophic failure prior to propagating through

the thickness. (Even worse is the totally imbedded crack that escapes detection

completely). Tiffany evaluated surface flaws in 2219 aluminum alloy plate under

static and cyclic conditions. However, since all structures must be joined in some

manner, it is probable that the most critical regions are not in the undisturbed

parent metal. In the case of aerospace vehicles, the most prominent joining tech-

nique is welding. It follows that a most useful program is to evaluate the toughness

of a potential aerospace material in a welded plate condition utilizing the part-through

crack technique. At the same time, the same material could be evaluated in the

welded sheet form by using the center-cracked specimen for comparison.

The 2219-T87 alloy sheet parent metal has been evaluated by various investigators

at room and cryogenic temperature (References 4 and 5).

Although, the evaluation of the flaw growth in weldments is undisputedly an excel-

lent idea, the results from such a program are subject to many possible variations

due to variables both known and unknown. Not the least of these is the effect of weld-

ing. Despite the fact that 2219 is a very weldable alloy (Reference 6), it is possible

that loose controls on weld specifications could cause wide variations in fracture

properties.

With this in mind, the present program was designed to determine the state-of-the-

art in welding and inspection of 2219 aluminum alloy before proceeding. An attempt

was to be made to simulate standard production welding techniques rather than closely

controlled laboratory techniques. A brief review of recent literature indicates that

although 2219 is readily weldable, the repair welding of this material (or any material)

could possibly lead to the creation of an embrittled joint. Consequently, the degrada-

tion of the welded joint due to repair welding was examined in this program.



INSPECTIONAND NONDESTRUCTIVE TESTING

A continuous effort is being made to improve nondestructive testing of welds and

weldments in aluminum alloys. Problems are evident both in the areas of defect

detection and, after detection, characterization of the defect. The distinction be-

tween detection and characterization must be clearly understood in order to fully

realize the benefits which can accrue from properly applied nondestructive testing.

An integrated program of flaw enlargement analysis correlated with nondestructive

testing is certain to improve the nondestructive testing techniques. On the other hand,

if the nondestructive testing can be sufficiently refined during an integrated test pro-

gram, it may eventually serve to drastically reduce the amount of destructive analysis

required.

If the physical limitations of a particular nondestructive testing method are not

understood, the test may be of little value. When a defect goes undetected after a

nondestructive test has been applied, criticism is often leveled against the test method.

In most cases, the legitimate target of the criticism should be the misapplication of

the test through lack of understanding of the basic principles.

A particular nondestructive test may also be misapplied if erroneous assumptions

have been made regarding the characteristics of anticipated defects. The sensitivity,

or detection ability, of a nondestructive test is highly directional with respect to the

major plane(s) of a defect, for example. Naturally occurring defects can assume an

almost infinite variety of characteristics in combinations and permutations of discrete

variables. Allowing that directional sensitivity is one of several critical factors,

certain assumptions are usually necessary to reduce expected defect shape and align-

ment to a specified number of most probable conditions.

Artificial defects, purposely created to be predictably unidirectional and specifically

shaped, provide an excellent basis for refinement of nondestructive testing techniques.

Since, at least to some extent, shape and size of flaws can be controlled and predicted,

many of the variables resulting from misapplication of nondestructive tests will be

eliminated. Effort can then be concentrated on the aspect of nondestructive testing

that requires the most refinement - that is, characterization of defects.

Refer to Appendix I for a complete description of the nondestructive testing as

applied in this program.



2/GENERAL TEST PROGRAM

The scope of this program, although quite broad, was not designed to provide sta-

tistical accuracy of data but was to examine various facets of the fracture area in a

promising aerospace alloy, 2219-T81 aluminum. The studies of weld and nondestruc-

tive testing techniques were designed to determine the production state-of-the-art in

U.S. aerospace companies as well as to point out possible deficiencies. Primarily,

the test program intended to obtain various fracture mechanics data for 2219-T81

weldments.

To study the effect of thickness, both 1.0-inch plate and 0.063-inch sheet were

studied. For each data point, parent metal tests were performed for comparison

purposes. Test specimens for sheets necessarily differed from those for plates, but

an attempt was made to duplicate test conditions. In general, the program was divi-
ded as follows:

Task I. Welding and Nondestructive Testing Literature Search

Task II. Testing of Parent Material and Weldments

a. Mechanical Properties Tests

b. Static Fracture Tests

c. Cyclic Flaw Enlargement Tests

Task HI. Repair Weld Tests

a. Mechanical Properties Tests

b. Static Fracture Tests

c. Cyclic Flaw Enlargement Tests

After testing, all fractures were examined visually. In cases where it was felt

that meaningful information could be obtained, light or electron fractographs were

obtained. Crack depth and flaw shape measurements were made on all 1.0-inch

plate fracture specimens.
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3/MATERIALS

The material used throughout this program was 2219-T81 aluminum alloy in two

thicknesses, 0. 063-inch sheet and 1.0-inch plate. Similar work on parent material

was conducted by Boeing on 2219 aluminum in the T87 temper (Reference 3). Com-

panion projects originated by NASA LeRC at Douglas and Frankford Arsenal also

utilized the T87 material.

Previous work (References 3 and 5) has indicated that the T81 material is some-

what tougher than the T87. The differences in processing are:

ao T81 is heat-treated and stretched by the manufacturer while T87 is heat-treated

and cold worked approximately 9% by the manufacturer.

b. TS1 is aged 18 hours at 350 ° F while T87 is aged 24 hours at 325 ° F (Reference 6).

The 1.0-inch plate obtained from Alcoa was designated as follows:

Alcoa Aluminum Sawed Plate

Mill Finish

Spec. MIL-A-8920, Oiled

Chemical Analysis (percent by weight)
Silicon 0.20 max

Iron 0.30 max

Copper 5.8 to 6.8

Manganese 0.20 to 0.40

Magnesium 0.02 max

Zinc 0.10 max

Titanium 0.02 to 0.10

Others, each 0.05

Others, total 0.15

Aluminum - Remainder

The 0. 063-inch sheet was obtained in 4 × 8 foot sheets under the same specifica-

tions from the same supplier.

5/6
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4/WE LDING

The current practices for welding 2219 aluminum alloys were reviewed and the

results were reported in Reference 7. An industry survey summarized in that re-

port showed that a wide variation of techniques was being used in this country. It ap-

peared that each of the methods was acceptable because of the fact that 2219 aluminum

is so readily weldable. The procedures used by Convair division are summarized in

Table 1.

Inasmuch as all welded specimens planned for this program were to be welded

perpendicular to the grain direction, all welds were made in 4-foot wide sections,

corresponding to the width of the sheet or plate (Figure 1).

Materials were examined by ultrasonic inspection prior to welding. All welded sec-

tions were radiographed after each welding process or weld repair. Standard weld

specifications were used to accept or reject individual welds. In some cases, unac-

ceptable portions of welds were found outside of the areas that were to be used for test

specimens. In one case of repair welding of the 0.063-inch sheet, a tensile test speci-

men was cut from an area containing marginal porosity and tested. Since the perform-

ance of that test was erratic, a replacement specimen was cut from the same sheet

and tested satisfactorily.

Information obtained from the industry survey described in Reference 7 indicated

that most companies would permit three weld repairs before rejection of the part.

Some permitted more than three repairs in the welding of the 2219 aluminum alloy

due to its remarkable forgiveness.

WE LD PROCEDURES

All welding surfaces were hand-scraped, draw-filed, and cleaned with MEK

(methyl ethyl ketone) just prior to welding. Although no backup bars were used for

the 1.0-inch plate material, mild steel backup bars with 1/8-inch deep by 3/8-inch

wide grooves were used with the sheet. All welds were automatic gas tungsten arc

(GTA, frequently called TIG) welds using direct current straight polarity (DCSP). The

sheet material was butt-welded in a single pass using 2319 filler wire while the plate

was joined in two passes (one from each side) without the use of filler. It was antici-

pated that there would be no mismatch problems with the 1.0-inch plate because of its

rigidity. However, a great deal of difficulty was experienced because of severe warpage

of the as-received material.
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Figure 1. Welded 1 .O-Inch Thick Plate Sections of 2219-T81 Aluminum Alloy 

RE PAIR WELDING 

%pair welds were made on the original welds using the parameters shown in 
Table 1. After the original sheet welds were made, inspected and accepted, the welds 
were  milled out to a depth of 0,040 inch. The repair was made with a single pass over 
the milled-out portion. This procedure was repeated until three repairs were made. 

For the 1 .()-inch plate material, the original weld was milled out in the center of 
the welded specimen to a depth of 0.5 inch. (See Figure 2.) 

Figure 2. One-Inch Plate Weldment Showing Milled-Out Section Prior to 
Repair Welding 
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Repair welds were made manually using GTA-AC techniques for both 0.063-inch

sheet and the 1.0-inch plate materials (Figures 3 and 4). The repair on the 0.063-

inch sheet was made in a single pass, while multiple passes were made on the 1.0-

inch plate.

10



Figure 3 .  Manual Repair Welding of 2219-T81 Aluminum Sheet 
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5/TEST SPECIMENS

Various test specimen configurations were used to obtain mechanical properties

and fracture characteristics, including fiat and round tensile specimens, center-

notched crack propagation specimens, and surface-notched plane strain fracture

specimens. (See Figures 5 through 9 for specimen configurations.) In general, weld-

ed test specimens had the same configuration as did the parent metal specimens with

the exception of the location of the notches.

TENSILE TESTS

All tensile tests were conducted on two general specimen configurations. (Figures

6 and 7.) Weld specimens were taken from the same pieces as were the fracture

specimens. In case of the 1.0-inch plate, round tensile specimens were taken from

the section of the plate between the large surface-notched specimens. All welded

specimens were determined to be radiographically acceptable according to current

specifications.

Welded tensile specimens were polished and etched in order to locate the various

weld zones prior to installation of strain gages (Figure 10). Originally, it was planned

to use separate tensile specimens for determination of the yield strength of the heat-

affected zones (HAZ). However, since the etching process was so effective in locating

the HAZ, and since the Convair strain gage laboratory was able to apply small strain

gages, it was possible to obtain stress-strain curves in the HAZ on the same specimen

used for determination of the properties of the welds. In several cases, the strain at

three locations (parent metal, weld zone, heated-affected zone) was obtained on a sin-

gle test specimen (Figure 11) with back-to-back gages. In some cases, the parent

metal tensile specimens were tested without strain gages by using a remote reading

cryogenic extensometer (Figure 12).

When the round tensile specimens were fabricated from welded 1.0-inch plate

aluminum and etched, the location of the HAZ was somewhat variable. The center

of the specimen corresponded to the center (of the thickness) or middle portion of the

welded plate. As a consequence, the intersecting planes of weld metal and specimen

surface caused a rather undulating fusion line. It was observed that the HAZ was

actually divided into two distinct zones, one of which was darker in color than the

other. An attempt was made to determine the stress-strain characteristics of both

zones. However, it was prudent to locate strain gages 180 degrees apart (back-to-

back) around the perimeter in order to eliminate eccentric bending effects. In most

cases, the HAZ was not exactly repeatable at 180-degree intervals. Nevertheless,

gages were applied and the outputs were recorded with reasonable results.

13
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Figure 6. Weld Tensile Specimen of 0.063-Inch Thick 2219-T81
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Figure 10. Welded 1 .O-Inch Plate Round Tensile Specimens. Upper Specimen 
Has Been Polished and Etched 

GAGE IN PARENT METAL - GAGE IN WELD ZONE GAGE IN HAZ 

I I *  h *  

Figure 11. Strain Gage Installation on Welded Sheet Tensile Specimen 
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Figure 12. Parent Metal Tensile Specimen with Remote Reading Cryogenic 
Extensometer Attached 

All  tensile tests performed on weld specimens were repeated on similar weld re- 
pair specimens. 

CENTER-NOTCHED SPECIMENS 

Center-notched crack propagation specimens were used for sheet base metal, 
welded, and repair welded static and cyclic fracture tests. Notches were machined 
in the center of the specimens (Figure 13) and extended by low-stress fatigue cycling. 
(See Page 20, "Notchestr for a more detailed explanation. ) For welded specimens, 
the weld bead was machined off and polished prior to slotting. Lateral stability was 
provided for these 13-inch wide specimens through heavy clevises that bolted to the 
ends of the specimens. 

Several sheet specimens (13-inch wide) were surface-slotted in order to try to 
study the flaw growth characteristics of the sheet materials under conditions that 
approximated plane strain. Control of the machine slot and subsequent fatigue crack 
extension was extremely difficult because of the thin gauge of material that required 
extremely small dimensions of the surface slot. 
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Figure 13.  Center-Notched Crack Propagation Sheet Specimens Showing Notches 
in (Left to Right) Parent Material, Weld Zone, Fusion Line 

1.0-INCH PLATE FRACTURE SPECIMENS 

Al l  parent metal, welded, and repair welded static and flaw growth fracture tests 
utilized the same specimen configuration (Figure 8). 
mens concerned the depth and shape of the surface notch itself. For flaw growth 
tests, the notch was shallower than for the static tests. In addition, several repair 
welded specimens contained internal flaws. These flaws were inserted in the repair 
weld area by either machining or by depositing tungsten flakes (Figure 14) in the 
bottom of the repair cavity during welding. 

The only variation in speci- 

NOTCHES 

A somewhat critical portion of the program concerned the insertion and location of 
the notches in the various fracture specimens. Initially, all notch starters were 
machined by the electrical discharge method. However, this process became ex- 
ceedingly time consuming for the part-through notches in the ls.0-inch plate mate- 
rial. Consequently, a tool was designed and manufactured that permitted milling the 
surface notch much more economically. 

The through crack spccimens using the 0.063-inch sheet material were notched 
with a Cincinnati ELEKTRO-JET* machine. The shape and size of the notch is  

*Trademark. 
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Top View 

1/2 IN. 

Side View 

Figure 14. Radiographs of Intentional Tungsten Inclusions in 1 .O-Inch 
Plate Weldment 

shown in Figure 9. The chisel-shaped notch tips were selected in order to simplify 
dressing of the electrode and to minimize the possibility of the notch extremeties 
being in different planes. 

The starter notches for the 1 .()-inch thick specimens were semicircular discs with 
beveled edges (See Figure 15). 

An attempt was made to provide a tip radius as small as  possible in order to 
facilitate fatigue notch crack extension. To a certain point, the machining of a very 
sharp notch reduces the cost of testing by reducing the time required for fatigue 
cracking. However, as  the notch tip radius approaches 0.001 inch or less, the time 
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SURFACE

\

Figure 15.

h
Shape of Surface Flaw in 1.0-Inch Plate Material

required for machining increases exponentially. For this reason, the specimens

machined under this program were restricted to a maximum tip radius of 0.005

inch.

In all cases, the notches were machined in such a way as to permit fatigue crack

extension of about 1/10 inch before the test initial crack length was attained.

As has been mentioned, the shape of the notching tool was semicircular for the

surface-cracked specimens. Since the specimens were fatigue cracked in bending,

the surface stresses were somewhat higher than the stresses at the tip of the notch

causing the final crack shape to be semielliptical (desirable).

LOCATION OF NOTCHES

For the parent material specimens, notches were located at the midpoint of the

specimen length and symmetric about the transverse center line.

The notches were located in three different areas for the welded specimens as

shown in Figure 16.

In order to locate the proper zones, the weld metal was machined off until it was

approximately flush with the parent metal. The remainder of the excess weld mate-

rial was hand polished until an even surface and constant thickness was obtained.

The surface was lightly etched with Tucker's etchant to reveal the weld metal, fusion

lines, and heat-affected zones.

NOTCH SHARPENING

Prior to testing, the notches were sharpened by fatigue cycling at room temper-

ature using a maximum tensile strength of about 20 percent of yield strength of the

material. For the welded plate material, it was necessary to increase the surface

stress (bending) beyond 20 percent of the yield strength of the weld metal in order to

22



1 2 3

NOTE:

WELD

FUSION ZONE

i. NOTCH IN HEAT-AFFECTED ZONE

2. NOTCH IN FUSION ZONE

3. NOTCH IN WELD METAL

EACH SPECIMEN CONTAINED

ONE FATIGUE CRACK.

1.0 INCH PLATE MATERIAL

+
WELD

NOTCH IN WELD METAL
IIIIIIIIIIIiiiiii

NOTCH IN FUSION ZONE

WELD

IIIIIIIIIIIIIIIII|IIIIIlUlUUUlUlUlUlIlUUUUlUUlUlIIIIUlIlUUlIIIIlUUlIII

[ii iiiiiiiiiiiiill
II]IIIII]IIIIIIIIII]IIIUIIII!

V_ELD

NOTCH IN HEAT-AFFECTED ZONE

SHEET MATERIAL

WELD METAL

FUSION ZONE

HEAT-AFFECTED ZONE

Figure 16. Location of Notches in Welded Specimens

23



extend the cracks within a reasonable amount of time. Since the bending stress at the

tip of the notch at the maximum depth was significantly closer to the neutral axis than

the outer fiber, the stress at this area was substantially less than the surface stress.

SURFACE NOTCH CONFIGURATION

The actual dimensions for the plate surface machine notches were obtained by assum-

ing the expected critical crack shape and working back from there. For static test

specimens, an a/2c of 0.25 was used. Assuming that the critical crack depth would be

between 40 and 50 percent of the thickness, the final machine notch depth of 0.40 inch

was selected. Since it was anticipated that fatigue crack extension in bending would

cause greater growth at the surface than at the greatest depth of the notch, it followed

that a circular cross section for the machined notch would propagate into a semiellip-

tical flaw. Therefore all machined surface notches were shaped like segments of circles.

The shape of the machine notch for flaw enlargement specimens was selected in the

same manner, except that the a/2c was 0.10 and the machined notch depth was 0. 150

inch.

Fatigue crack extension was obtained by cyclic bending until the surface crack had

propagated approximately 0.1 inch at each tip.

VARIATION OF HARDNESS IN WELD AREAS

In addition to visual identification of weld zones, hardness readings were taken of

various specimens. In several cases, sections were cut from weld areas, polished,

and hardness readings obtained. Typical variations of hardness in a welded plate are

shown in Figure 17.
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Figure 17. Variation of Hardness With Weld Zones 
For 2219-T81 Plate 
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6/EXPERIMENTAL PROGRAM

The experimental program was divided into testing of base metal and welded

specimens (Task II) and testing of repair welded specimens (Task III). For each

task, tensile tests were performed to determine basic mechanical properties of the

parent metal and weldments. In addition, static fracture tests and cyclic flaw growth

(fatigue) tests were performed under the required conditions. Due to cost and time

limitations, only one specimen was tested for any particular condition. (There was

one exception; additional center-notched welded specimens were cycled at -320° F to

increase the statistical accuracy of the data for this condition.)

Room temperature tests were performed in one of three laboratories where the

temperature range was from 70 ° to 80 ° F. Tests at -320 ° F were performed in sev-

eral different cryostats containing unpressurized liquid nitrogen. Spot checks of the

actual temperature, using thermocouples attached to various test specimens, indi-

cated temperature variations no greater than +1 ° F.

For tests at -423 ° F, specimens were immersed in liquid hydrogen contained in

special closed cryostats (Figure 18).

For fracture tests, the cryostats contained viewing ports that permitted obser-

vation of the notched areas of the specimens during testing.

MECHANICAL PROPERTIES TESTS

Tests performed in this category included standard sheet tensile tests on base

material and welded sheets, and round tensile tests on base metal and welded 1.0-

inch plate.

In all cases stress-strain curves were obtained by either cryogenic extensometers

or strain gages and associated recording equipment. Ultimate strength, yield strength,

modulus of elasticity, and elongation were obtained for all test specimens. Originally,

individual specimens were to be tested to obtain the yield strength of the heat-affected

zone and of the weld metal. However, since it was possible to obtain both values with

a single specimen (Figure 19), the total number of tests performed was reduced

correspondingly.

Strain gages were installed on both sides of sheet specimens and every 90 degrees

around the periphery of round plate specimens in order to minimize bending effects.

Data were obtained during testing by manual readout on an SR-4 Strain Recorder.

Readings were obtained until failure of gages or test specimens occurred.
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Figurc 1 8. Liquid Hydrogcn Cryostat  for Small Test Specimens Installed in 
Teusilc ‘rest Machine 

2 8  



Figure 19. Strain Gage Installation on Sheet Tensile Specimens 

A strain rate of 0.005 inch/inch/minute was used until yield strength was reached. 
After that point, a head travel rate of 0.015 inch/minute was used. 

For cryogenic tests , special quick-release clevises were used for all mechanical 
properties tests (Figure 20). 

UNIAXIAL FRACTURE TESTS - SHEET 

Static fracture tests were performed on the 0.063-inch sheet parent metal and 
welded materials utilizing a plane stress , center-notched fracture mechanics test 
specimen. Crack growth was observed continuously by use of telescopes directed to 
the crack front areas. Critical crack length was defined as  the last reading detected 
by visual observation. After failure, the fractured surface was examined to verify 
crack growth. Loading rates were adjusted to provide sufficient time to obtain ac- 
curate data in less than five minutes to ultimate fracture of the specimens. 

Initial notch sharpening (crack extension) was accomplished by cycling at room 
temperature at a s t ress  level of about 20 percent of the room temperature yield 
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0 

Figure 20. Strain Gaged Sheet Tensile Test Specimen in Quick-Release Clevis 

strength of the material. Because of the rather large size of the sheet specimens 
(13 inches wide) , cycling was performed in tension in a standard laboratory (Tinius- 
Olsen) tensile test machine equipped with an automatic cycling programmer. 

FLAW ENLARGEMENT OF SHEETS 

Specimens used for fatigue testing were identical to those used for static testing 
except for the initial length of the center cracks. 

The maximum cyclic stress was designated to be 90 percent F or  71.5 per- 
cent of Ftu, whichever was smaller. This requirement was relaxed during the pro- 
gram due to difficulty in extending cracks in the weld material. Cyclic loading rate 
was a minimum of 40 , 000 psi per minute. The crack length was monitored and re- 
corded at frequent intervals during testing and the load was adjusted correspondingly. 

t Y  

In general, f o r  each test condition and temperature, four specimens were tested 
as follows: 1) slot in base metal, 2) slot in heat-affected zone, 3) slot in fusion line, 
and 4) slot in center of weld. 
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For repair welded specimens, the procedures were repeated except that no addi-

tional base metal tests were performed.

One series of tests was performed on 13-inch wide sheet specimens containing

only surface notches. These specimens were cycled at various temperatures to

determine if the surface crack would grow through the thickness before fracture

occurred.

UNIAXIAL FRACTUB_ TESTS -- PLATE

All static, fatigue, base metal, weld metal, and repair welded plate tests were

performed on a plane strain fracture toughness specimen containing a semielliptical

surface flaw. Static tests were performed at room temperature, -320 ° F, and -423°F

with notches located in the base metal, heat-affected zone, fusion line, or weld metal.

Flaw enlargement tests were performed on similar specimens containing shallower

notches. In several cases of repair welded tests, flaws were imbedded in the center

of the weld material prior to fatigue crack extension.

Notches were cut in the surface of the specimens by electrical discharge or milling

machine. The initial machine notch shapes were segments of circles approximately

1/10 inch shallower than the anticipated notch depth. The notches were fatigue cycled

in bending (Figure 21) at a surface stress of approximately 20 percent of the yield

strength of the material surrounding the notch. However, due to the excessive num-
/

ber of cycles required to extend the notch, the surface stress level was increased to

more than 30 percent of yield strength for part of the crack extension.

Originally it was anticipated that stress levels could be selected that would permit

failure of the specimens in from 300-500 cycles. However, the toughness of the

weld material and the rather low yield strength of the weld metal caused many of the

specimens to survive 500 cycles. As a consequence, fatigue cycling of welded speci-

mens was performed at 50 percent (approximately 20 ksi) of the corresponding stress

for the base metal specimens.

If failure did not occur before 500 cycles, the stress level was increased to 23 ksi

for 100 additional cycles. If the specimen survived the additional cycling, the stress

level was increased to 25 ksi for 400 more cycles. When a specimen was still intact

at 1000 cycles, it was statically pulled to failure.

During some of the room temperature flaw enlargement tests, ultrasonic inspection

techniques were used in an attempt to monitor crack growth. Sporadically specimens

were removed from the test machine and radiographed to compare the x-ray indi-

cations with the other nondestructive test techniques.
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Figure 21. Test Setup for Bending Fatigue Crack Extension of 1.0-Inch 
Plate Material 
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7/TEST RESULTS

All test results are shown in either tabular or curve form in this report. Where

possible, results are presented in more than one form. In many cases, the data do

not give statistical comparative results. In those cases, the results are discussed on
an individual basis.

MECHANICAL PROPERTIES

Base metal, weld metal, and repair weld properties were obtained on both the

0.063-inch sheet and the 1.0-inch plate materials at 75, -320, and -423 ° F. Ultimate

tensile strength (Ftu); 0.02 percent offset and 0.2-percent offset tensile yield strength

(Fty); and percent elongation for base metal, heat-affected zones, weld zones, and
repair weld zones are shown in Table 2 for 0. 063-inch sheet and in Table 3 for 1.0-

inch plate.

The variations of ultimate strength and yield strength with temperature are shown

in Figure 22 for 2219-T81 sheet and in Figure 23 for the plate materials.

STATIC FRACTURE TOUGHN-ESS

Tests for determination of plane stress fracture toughness for material loaded in

the longitudinal grain direction were performed on the base material, welded, and re-

pair welded sheet materials at 75, -320, and -423 ° F. Data obtained from these tests

are shown in Table 4. The 0.2 percent Ftv obtained from the mechanical properties

tests are shown in comparison with the nef fracture stress (an). Since the net fracture

stress for welded test specimens exceeded the yield strength, all fracture toughness
values are listed as "apparent" values.

Net and gross fracture stresses are calculated as follows:

P

= B-W

where

P
(y =

n B(W - 2a)

P = load at onset of rapid crack propagation (kips)

B = specimen thickness (inches)

W = specimen width {inches)

2a = critical crack length (inches)
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Figure 23. Variation of Strength with Temperature of

2219-T81 Aluminum Alloy 1-Inch Plate

The plane stress fracture toughness was calculated as follows:

K' = _Wtan _'---_ac {YG W

where

K ' = fracture toughness uncorrected for plastic zone
C
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Fracture toughness was corrected for the plastic zone by assuming that the final

crack length is equal to the critical crack length plus the length of the plastic zone as

follows:

r

Y

!
a

K
C

(K')2
2

2_ (0"y s )

= a+r
Y

Tfat= a G Wtan

where

r

Y

a
ys

I
a

K
C

= plastic zone correction

= yield strength of material containing the crack

= crack length corrected for plastic zone

= fracture toughness corrected for plastic zone

For comparison purposes, an approximate plane strain fracture toughness (Kic) was

calculated by determining the load at "pop-in" by optical methods (Figure 24). The Kic
was calculated as follows:

2a
Kic = _ Wtanp W

where

(Tp = gross stress at pop-in

2a D = crack length at pop-in

The variation of plane stress fracture toughness with temperature for base metal

and weldments is shown in Figure 25, and for repair welded sheet is shown in Figure

26.
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Figure 24. Center-Notched Fracture Toughness Specimen Test at  -32OOF. 
Note Transits Used for Determination of Crack Growth 
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Although uniaxial static fracture testing of the plate paralleled the sheet testing,

the specimen and test techniques were different. For the plate material, plane strain

fracture toughness data were desired. The data were obtained through use of a surface-

cracked tensile specimen. As in the sheet program, cracks were formed in four areas,

namely: 1) base metal, 2) heat-affected zone (HAZ), 3) fusion line, and 4) in the cen-
ter of the weldments. The results of the static fracture tests are shown in Table 5.
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for Repair Welded 2219-T81 Sheet

Flaw dimension shown were obtained after fracture and reflect the greatest or criti-

cal dimensions of the crack. The direction of the maximum flaw growth is measured

from the intersection of the semi-minor axis with the ellipse by angular degrees to the

maximum flaw growth point. A 0 ° direction would indicate that the deepest penetration

of the crack was directly below the center of the surface projection or on the minor

axis of the semi-ellipse. The fracture stress is the gross value, with the reduction in

total cross sectional area ignored. Two plane strain fracture toughness (Kic) values
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are shown; the first for the flaw depth at the minor axis of the semi-ellipse (_ = o),

and the second for the flaw at the angle of greates flaw growth (_ _ o).

Plane strain fractmre toughness was calculated using the following equation:

2 a

where

Cr = gross stress on section at instability (ksi)

a = flaw depth Cinches)

Q = flaw shape parameter

The flaw shape parameter can be obtained from curves found in various publications

(References 1 and 3) or can be calculated as follows:

Q = _ _2 -(0.212) (--_s) 2 ]

where

= complete elliptical integral of the second kind

This equation was solved for several values of--_--_ and the results were plotted in

Figure 27. If the stress intensity K 1 is desired at a point not on the minor axis, the

expanded form of the critical stress intensity factory may be used:

a 2 1 2 2 2 2 1/4

K I = 1.1¢rw - {y(-_) [_ (a cos ot +c sin c_)]

Another method reported by Tiffany, Lorenz and Shah (Reference 8) and attributed

to F. W. Smith (Reference 9) substitutes two multiplication factors as follows:

where

, Mk, /-_(y (a 1//2K I = M 1 Q)

I

M 1 = free surface coefficient

= finite thickness correction (sometimes called the deep flaw stress

intensity magnification correction)
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Ml°Smith calculated for various values of-_ and for values of o_between 0 and 9O

a _ value is
degrees. (See Reference 8, p 73. ) For _ = 0 degrees and an _c of 0.1, the M 1

about 1.09, slightly less than the 1.10 suggested by Irwin. (At 0 degrees, Smithts

factors vary from 1.03 to 1.09 as_--a varies from 0.5 to 0.1. )zc

The finite thickness correction is based on the theory that as the crack grows through

the thickness, the stress intensity is magnified by the back surface of the plate. (Irwin°s

equation neglected this magnification effect and was restricted to critical crack depths

of less than 40 percent of the thickness. ) Again Smith has calculated Mk° values for
a

various combinations of _e' which are plotted by Tiffany, et al (Reference 7, p 74). In
a

the case of a semicircular flaw (_ = 0.5), the magnification factor is negligible. How-
a

ever as the flaw becomes longer (_-_ decreases), the Mk°increases to about 1.7 fOr_c
a

of 0.2 0 and an, of 0.70.
t

This technique was used to calculate the Kic values when _ was not zero (_ # 0).

FRACTURE APPEARANCE

In many cases it becomes impossible to describe or tabulate the appearance of the

fracture surfaces. Consequently it was deemed desirable to include photographs of the

fractured surfaces themselves for the benefit of the reader. Figures 28 and 29 show

factured surfaces for all static plate tests at each test temperature. The reader can

determine the resultant data for each test by use of the corresponding specimen identi-
fication number in Table 5.
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. 

---. 

Y 

-320°F 

BASE METAL, B6 

WELD METAL, 10 

FUSION LINE, 18 

HEAT AFFECTED ZONE, 12 

-423 O F  

WELDMETAL, 9 

FUSION LINE, 23 

HEAT AFFECTED ZONE, 15 

F I ~ X I I T  2 s .  I ~ ’ l * : t c ~ ~ u r o  SurI‘;i(~cs of  I .()-inch 221g-T81 Tested in Static Fracture a t  
Various Temperatures. Marginal Notes Indicate Test Temperature 
and Location of Surface Flaw Relative to Weld Bead. 
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75°F 

HEAT AFFECTED ZONE, R20 

FUSION LINE, R7 

WELD METAL, 16 

-320" F 

WELD METAL, R13 

FUSION LINE, R16* 

HEAT AFFECTED ZONE, R4 

*Specimen did not fail through flaw. 

-423°F 

HEAT AFFECTED ZONE, R11* 

FUSION LINE, R17 

WELD METAL, R9 

*Specimen did not fail through flaw. 

Figure 29. Fracture Surfaces of Repair Welds in 1.0-inch 2219-T81 Tested in Static 
Fracture at  Various Temperatures. Marginal Notes Indicate Test Tem- 
perature and Location of Surface Flaw Relative to the Repair Weld. 
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CYCLIC FLAW GROWTH TESTS - SHEET

Center-notched base metal, welded, and repair welded sheet specimens were cycled

at room temperature, -320 and -423°F. Results of these _tests are shown in Table 6.

Several tests were performed on the 0.063-inch sheet material using a 13-inch-wide

specimen containing a semielliptical surface crack. The results of these tests are

shown in Table 7.

Typical crack growth characteristics of the sheet materials are shown in Figures 30

through 37.

In one case (designated as the worst case situation), a group of specimens was

tested under the same test conditions. These tests were of cyclic flaw growth in welded

2219-T81 sheets at -320°F. The history of crack growth with number of cycles is

shown in Figure 35° The notch was located in the center line of the weld and the maxi-

mum stress level was 20.5 ksi. (The load was adjusted during testing to maintain a

net stress of 20.5 ksi during crack growth. ) For comparison, the crack growth of the

repair welded sheet at -320°F is shown in Figure 36 for each of the areas tested°
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Figure 36. Crack Growth for Welded 2219-T81 Sheet at -320"F (_m = 2.5 ksi)
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CYCLIC FLAW GROWTH TESTS - PLATE

All cyclic plate tests utilized either a semielliptical surface flaw or a totally im-

bedded flaw in the center of the weldments. Because of time and financial restrictions,

it was not always possible to fatigue a specimen to failure at a single stress level. As

a consequence, the following procedures were used for welded and repair welded speci-

m ens:

a. Cycle at 20 ksi to failure or 500 cycles (whichever occurred first).

b. If specimen survived 500 cycles, increase stress to 23 ksi and cycle to failure or

100 additional cycles.

c. If specimen survived 600 cycles, increase stress to 25 ksi and cycle to failure or

300 additional cycles.

d. If specimen survived 900 cycles, it was statically pulled to failure.

In some cases, Steps c and d were modified slightly to permit additional cycling.
A summary of all plate fracture tests is shown in Table 8.

Since it was virtually impossible to measure flaw depth growth during testing, no

curves are available that parallel those obtained from testing of the sheet material.

Flaw enlargement data for all 1.0-inch plate fatigue tests are shown in Table 9.

All flaw measurements were determined after fracture of the specimens. Initial flaw

size is considered to be that flaw size that occurred immediately after low stress notch

extension. Final flaw size is either the critical flaw size if fracture occurred due to

cycling or the maximum flaw obtained during cycling. In some cases it was possible

to obtain several flaw sizes for various stress levels when failure did not occur within

500 cycles. A substantial amount of engineering judgement was required to determine

the initial and final flaw sizes. In addition, the crack growth behavior is quite erratic

in weldments and repair weldments. The reliability of the data presented is a function

of such erratic behavior.

In several cases, the repair welded specimens survived less than one cycle. The

cause of these apparently premature failures was a combination of variability of the

repair weld material and the scatter in mechanical properties data.

The appearance of fractured surfaces is shown in Figures 38, 39, and 40 for plate

flaw enlargement test specimens.

63



E_
I

@,)

S.., "C

{0

@

0

"C

0

E_ E_

_o
E

I

E_

oo

° _ °_° _ _ _o _ _

o_ o o

II II _i

64



o
o

oo

!

o

o

o

oS

&)

e_

o

0_

_A

o_

o

o

o_

z '_zg_

z _ "_._

_._ o o _
,._ _,_ _ _'_ •

_ z zz = N

g
.... _ _

_ eoZ Z_ t- Z Z

• ° °

0,1 _q oq _-

I I I

v

65

l

I I

o

o
e_



.=

=
o

I

0

,=
<

0

o_

°_ _
¢q

_Z vZZ

I

_==.

II II II

66



0
z
v

A _

z __-mm_ z z
II II

.._ _
=-_

e_

e_

2g

_ _ ._

6?



!

O0

I

P.4

0,1

I

xj
o

°,=4

o

_'6 _ _ _ _ _

L_

• . °

_ ..........

E

0

@

_ °

-r

68



cD

C)

v=d
oo

!

i=-I
cq
¢q

¢J

I

c_

°P=i
_=_

cJ

cD
,.Q
c_

°

z z _ _'_

e-

b_

Z

• °

_,_

._z

69



75' F 

BASE METAL, B5 

WELD METAL, 5 

FUSION LINE, 24 

- 

-320'F 

BASE METAL, B4 

WELD METAL, 2 

-423'F 

BASE METAL, B1 

BASE METAL, B2 

WELD METAL, 4 

HEAT AFFECTED ZONE, 11 

Figure 38. Fracture Surfaces of 1.0-inch 221g-T81 Tested in Cyclic Fracture at  
Various Tcmpcratures . Marginal Notes Indicate Test Temperature and 
Location of Surface Flaw Relative to Weld Bead. 
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75’ F 

HEAT AFFECTED ZONE, 7 

FUSION LINE, R3 

WELD METAL, R15 

-423’ F 

HEAT AFFECTED ZONE, R8 

FUSION LINE, R21 

WELD METAL, R18 

Figure 39. Fracture Surfaces of Repair Welds in 1 .O-inch 2219-T81 Tested in Cyclic 
Fracture at Various Temperatures. Marginal Notes Indicate Test Tem- 
perature and Location of Surface Flaw Relative to the Repair Weld. 
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MACHINED NOTCH, R22 

- TUNGSTEN INCLUSION, R6 

TUNGSTEN INCLUSION, 19 

-423' F 

1 

LINEAR POROSITY, FU9 

TUNGSTEN INCLUSION, R2 

w------.-  ... =u 

METAL TESTED 
AT -423O F. 

- 
NUMBERS: R1 

1 
3 
6 

I 

Figure 40. Fracture Suriiiccs of Repair Welds in 1 .()-inch 2219-T81 Tested in Cyclic 
Fracture at Various Tcmperaturcs. 
peraturc> and Type of Internal Flaw in the Repair Welds. 

Marginal Notes Indicate Test Tem- 
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8/DISCUSSIONOFRESULTS

MECHANICAL PROPERTIES - SHEET

The strength of 2219-T81 sheet increases with a decrease in temperature between

75 and -423°F (Table 2, Figure 22}. The same generalization can be made for both

the automatic TIG welds and the manual repair welded sheet. The results obtained

show small scatter for the base metal (whose ultimate strength varied from 65.2 ksi

at 75°F to 94.9 ksi at -423°F) but a great deal more for the 0.02 percent and 0.2 per-

cent offset yield strengths of the weldments. Inasmuch as a single specimen was

used to obtain stress-strain curves for both heat-affected zone (HAZ} and weld metal

zones, the ultimate strength for the welded specimen represents only the strength of

the weakest section, namely the weld metal. For purpose of calculating the plastic

zone correction at the weld fusion line for center-notched specimen tests, the average

yield strength between the HAZ and the weld metal was used. Perhaps the most signi-

ficant portion of the mechanical property data is the ratio of the yield strength to ulti-

mate strength. For comparison purposes, these ratios are listed as follows:

Base Metal Weld Heat-Affected Zone

75 ° F 0. 785 0.475 0. 553

-320°F 0.75 0.430 0.329

-423°F 0.71 0.413 0.498

The values used for obtaining the yield strength to ultimate strength ratios were

average values for 0.2 percent offset.

Several interesting observations can be made. First, the yield strength of base

metal is about three-quarters of the ultimate strength. At the same time, the yield

strength of the weld metal is almost always less than half the ultimate strength of the

joint.

For both the base metal and the weld metal, the ratio decreases with a decrease

in temperature.

The similar ratios for the repair welded sheets fall between the base metal and the

automatic welded material.

A typical stress-strain curve is shown in Figure 41. In the lower elastic region, the

curves for the weld metal and heat-affected zone are almost identical. As the propor-

tional limit is passed, the curves draw apart but then continue at the same slope. In

most cases, the modulus of elasticity is the same in both zones.
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MECHANICAL PROPERTIES - PLATE

The mechanical property characteristics of plate were very similar to those of the

sheet (Table 3 and Figure 23) for the base metal and automatic welded materials.

However, when the plate was repair welded, the properties became very erratic.

For example, the ultimate strength of the welded plate increased from 41 ksi at 75°F

to 64 ksi at -423°F. However, when the same material was manually repair welded

three times, the variation was from 31 ksi at 75°F to only 34 ksi at -423°F.

PLANE STRESS FRACTURE TOUGHNESS (Kc)

Variation of the K with temperature for base metal and welded sheet is shown in
c

Figure 25. At room temperature, the static fracture toughness (corrected for plastic

zone) of the heat-affected zone (HAZ) is greater than that of the base metal. However,

at -423°F, the Kc of the base metal is 108 ksi i¢_. compared to 92 ksi i¢_-. for the

HAZ. In general, the toughness of this alloy increases with a decrease in temperature.

However, the corrected Kc for the automatic TIG welded sheet shows a decrease at

-423°F. For the manual repair welds, except for the fusion line, the Kc (corrected)
increases continuously with a decrease in temperature.

VARIATION OF PLANE STRESS FRACTURE TOUGHNESS WITH LOCATION OF CRACK

One of the important phases of this program concerned the relative fracture tough-

ness of various zones in the vicinity of the welds. Representations of the Kc variation

with weld zones are shown in Figure 42. All Kc values shown are corrected for the

plastic zone. In addition, the uncorrected values are shown at room temperature.

Again, the values obtained were for only one test for each test condition and are sta-

tistically unacceptable. In the case of room temperature, a small amount of scatter

could vary the ranking of the various zones. The results shown for room temperature

tests indicate that the corrected Kc for the heat-affected zone is tougher than any other

zone including the base metal. However, at -320°F the corrected Kc values of the

HAZ are the lowest of all zones. The results at -423°F behave as one might expect

with the K c decreasing from the parent metal down to the center line of the weld. The

apparent Kic values obtained from the center notched specimen tests are also plotted

(Figure 42c) to show the similarity between the two fracture toughness concepts. Ano-

ther examination of the results (Table 4} shows some interesting trends.

When the uncorrected Kc values are plotted at 75°F (Figure 42), the resulting
curve is more like what one expects with the highest value at the base metal zone de-

creasing continuously to the center of the weld.

The only difference between the two sets of values is the plastic zone correction:
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The only term that can cause a change in the relative ranking of the corrected Kc
values is the yield strength. As has been discussed, the yield strength of either the

weld or heat-affected zones is less than half the base metal yield strength. At the same

time, the ultimate strength in the weld area is about two-thirds the ultimate strength

in the parent material. It appears that the correction for plastic zone is too severe

for the weld zones. It may be that the substitution of ultimate strength for yield strength

in the plastic zone correction would be more accurate despite the apparent discrepancy.

PLANE STRAIN FRACTURE TOUGHNESS OF 1.0-INCH PLATES

Results for static fracture tests on 1.0-inch-plate material are shown in Table 5.

All tests performed in this portion were plane strain surface-notched tests. The varia-

tion of plane strain fracture toughness with temperature is shown in Figure 43 for base

metal and automatic welded specimens and in Figure 44 for manual repair welded speci-

mens. Actually the base metal specimen test at -423°F was not performed since the

anticipated load exceeded the capacity of the test machine. In addition, the repair

welded HAZ specimen tested at -423°F and the repair welded fusion line specimen test-

ed at -320°F did not fail through the surface notch. The odd failures of these two tests

are an indication of the erratic behavior of 2219-T81 plate that has been subjected to

three repair welds.

For purposes of discussion, the Kic value obtained from the base metal sheet test is

used in Figure 43 to complete the curve.

Nevertheless, the results are quite revealing. The Kic of the base material is sub-
stantially greater than that of any other zone at all test temperatures. As was expect-

ed, the toughness of the heat-affected zone (HAZ) is higher than any part of the weld for

the automatic welded plate. Not expected was the lower ranking of the HAZ tests after

the plate had been subjected to repair welding. Again the problems associated with

locating the notch in the HAZ and the fusion line of the plate material could cause the

discrepancy, particularly after repair welding, which causes broadening and overlapp-

ing of the weld zones.

The Kic for all zones except the weld metal increases with a decrease in temperature.

However, the toughness of the weld metal, either as-welded or repair welded, shows a

distinct reduction between -320 ° and -423°F. In fact, the as-welded plate (weld zone)

toughness decreases continuously with a decrease in temperature.

This loss of toughness in the weld metal at -423°F was observed in the sheet tests

also (Figure 25).

NET FRACTURE STRESS

A great deal has been written about the relationship of the net fracture stress to the

yield strength of the material as a criterion for acceptable fracture toughness data
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(Reference 1). In general, most investigators believe that the net fracture stress

should not exceed 80 percent of the yield strength for plane stress tests and should not

exceed 100 percent of yield strength for plane strain tests. Two reasons are suggest-

ed for this requirement, namely: 1) the basic stress analysis is based on linear elas-

tic theory, and 2) as the average stress approaches yield strength, stress concentra-

tions cause the stress in a portion of the material to be elevated into the plastic region

resulting in progressive failure due to general yielding.

The plastic region of welded material does not resemble the same region in parent

materials however, particularly when the base metal has been subjected to a complex

tempering process and the weld metal has not. Without performing sustained load test-

ing in the plastic region, it is not entirely proper to say that the weld metal will fail by

general yielding when the stress exceeds an arbitrary yield strength obtained by an off-

set method.

It was not the intent of this program to design a new plastic theory of fracture

mechanics. However, it is necessary to understand the limitations of the data. A

comparison of net stress to yield strengths for various tests is desirable.

For sheet tests the following ratios are obtained:

Temperature (°F)

Net Stress/ Net Stress/

Zone Yield Strength (0.2%) Ultimate Strength

75 Base Metal 0.74 0.58

HAZ 1.44 0.80

Fusion line 1.40 0.72

Weld 1.47 0.70

-320 BM 0.64 0.48

HAZ 1.23 0.57

FL 1.13 0.51

W 1.26 0.54

-423 BM 0.81 0.57

HAZ 1.12 0.56

FL 0.93 0.42

W 0.90 0.37

At all temperatures, the base material meets (or practically meets) the 80 percent

requirement. However, in no case does any other zone qualify. In fact, only at -423°F

does the yield strength exceed the net stress. A rather interesting observation can be

made concerning the net stress to ultimate strength ratio. In all cases, this ratio is
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0.80 or less. Although the ratio for base metal is noticeably less than for all other

zones at room temperature, this difference minimizes at -320°F and is reversed at

-423°F where all other zones show lower ratios than the base metal.

At room temperature the net stress to yield strength ratio for all weld zones is

about twice as high as the base metal ratio. At the same time the net stress to ulti-

mate strength ratio for weld zones is only 1.2 to 1.4 that of the base metal. Again,

the reason for these discrepancies is the large decrease of yield strength that is suf-

fered by the 2219-T91 alloy due to welding.

The corresponding results for 1.0-inch plate are:

Temperature (°F)
a

75

Zone ff /ff (_Niff_.... N YS u,

BM 0.91 0.72

HAZ 1.38 0.68

FL 1.14 0.50

W 1.46 0.59

-320 BM 0.84 0.64

HAZ 1.58 0.68

:FL 1.42 0.57

W 1.15 0.42

-423 HAZ 1.39 0.63

FL 1.0 0.46

W 0.70 0.32

The results are even more striking here. In all cases but one, the net stress to ulti-

mate strength ratio is less for welded zones than for the base metal, while the net stress

to yield strength ratio is always greater for welded zones than for the base metal.

Although the usual fracture criteria are violated in the aluminum weld tests, it is

unrealistic to attempt to meet them since the required stresses would be far below those

found in aerospace application which, after all, is the real problem area.

As may be seen from a typical weld stress-strain curve shown in Figure 41, the

behavior of an aluminum weldment can not be expected to be well characterized by a

linear-elastic stress analysis. Thus the difficulty arises in interpreting the data, but

as these conditions are typical of those found in welded aluminum structures, these

problems are real. It is expected that behavior of the surface flawed specimens in

this program, even under general yielding, should be similar to the same type of flaw's

behavior in an actual vehicle. The through-the-thickness flaws may be subject to

greater errors because of the finite-width effect, but past experience with 2219 alumi-

num indicates the results are conservative. Much work needs to be done in the area

of plastic fracture mechanics to alleviate this problem.
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CYCLIC CRACK GROWTH- SHEET

The crack growth of the sheet was determined under a maximum stress level (ten-

sion) that was virtually constant during testing. The minimum stress level (tension)

was applied simply to prevent the sheet from being subjected to compression loading

or buckling due to a change in length (caused by deformation or slippage). Some of the

crack growth is shown in Figures 30 through 36.

In the early part of the program there was some consideration given to the size of

the initial crack length. Some of the specimens were machined with a crack length of

about 30 percent of the sheet width. However, it was desired to limit the maximum

fatigue stress to 90 percent of yield strength (or 71.5 percent of ultimate). At the same

time it was desired to limit the net fracture stress of the static fracture specimens to

80 percent of the yield strength. Consequently, a fatigue specimen with a 30 percent

crack length should fail before one cycle was completed. For this reason, the length

of the crack was changed to 1/2 inch to provide some crack growth at higher stress

levels before failure. Nevertheless, some tests were performed with a 30-percent

initial crack length. After the program began, the cyclic maximum stress level was

set at 40.5 ksi for base metal tests and 20.5 ksi for welded specimen tests.

The general crack growth characteristics of the base metal sheet are similar at the

three test temperatures. It appears that there are two distinct rates of growth; the

initial rate is slow, but speeds up as fracture approaches. The initial rate is approxi-

mately 300 cycles/inch, which speeds up to a maximum of about 10 cycles/inch as

fracture becomes imminent for the sheet material at 75 and -320 ° F.

The growth rate in the center of the welded sheet is somewhat greater than the rate

of crack growth in the heat-affected zone. In fact, at -423°F, the crack grew slower

in the HAZ than it did in the base metal (Figure 34). In addition the HAZ sustained

many more cycles than the base metal at -423°F.

Ironically, the repair welded sheet lasted longer and cracked at a slower rate than

did the automatic welded sheet at room temperature when the crack was located in the

center of the weld (Figure 31). This was not the case at -423°F however, where the

total cycles to failure of the welded sheet (center of weld) exceeded the cycles to failure

of the repair welded sheet (Figures 34 and 35). It should be noted that at -423°F, the

specimen with a notch in the center of the weld was inadvertantly cycled (at -423 ° F) at

a lower stress level for several thousand cycles before the maximum stress was in-

creased to 20.5 ksi. At that time the crack growth rate was very high (about 20 cycles/

inch) but quickly changed (after 20 cycles) to a very slow crack growth rate (2500 cycles/

inch) for about 600 cycles. At this temperature, the repair welded sheet assumed

growth characteristics that resembled the growth rate of the as-welded fusion line at

-423°F. Again, at -423 ° , the growth rate in the repair welded HAZ is the lowest of

all tests performed. One might expect to find erratic results for crack growth in the
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HAZ andat the fusion line becauseof the difficulty in identifying these areas. In addi-

tion, the HAZ and fusion line become even more complicated as multiple weld passes

are utilized (as they are in repair welding). Furthermore, the repair process frequent-

ly calls for removal of the weld material before additional repairs can be made. This

process only multiplies the possibility of errors.

Crack growth rates at -320°F show the same sort of erratic behavior as did those

rates at other temperatures (Figure 33). At this temperature, the crack in the HAZ

started growing at the same low rate as at other temperatures but increased drastically

at about 1100 cycles. Even then, the rate of growth of the crack in HAZ was less than

the rates in other zones.

A rather interesting phenomenon occurred in the heat-affected zone of the welded

sheet at 75 ° F. One test, cycled at 11 ksi (90 percent of Fty ) grew at the usual low rate
Figure 31). However, a similar specimen tested at 20.5 ksi showed some remarkable

growth characteristics. For the first 110 cycles, the crack growth rate was about 320

cycles/inch. At that point the crack extended suddenly 0.4 inch in the next 5 or 6

cycles. Here the growth rate reverted to the original rate until about 240 cycles were

completed. At 250 cycles, the crack grew into the weld metal, and the growth increas-

ed to a rate resembling that of other cracks in weldments.

The statistical problems associated with testing insufficient numbers of specimens

are demonstrated in Figure 36, which shows the crack growth variation with cycles for

five welded sheet specimens at -320°F. Four of the five specimens have approximately

the same growth rates, although one of these started erratically. In addition, four of

the five fractured at about the same final crack length. However only three of the five

show the kind of behavior that is suitable for good statistical accuracy. All five of the

specimens contained the same type of initial crack in the center of the weld metal. The

behavior of the repair welded sheet on the same scale (Figure 37), which is what one

might predict, shows that the difference between the growth characteristics of, say, the

fusion line and center line of the weld is comparable to the scatter obtained from the

five welded specimens with the crack at one location.

Nevertheless it appears possible to obtain good crack growth data if sufficient tests

are performed.

CYCLIC CRACK GROWTH - PLATF

The behavior of welded and repair welded 2219-T81 aluminum plate is quite erratic

when subjected to cyclic loading (Table 9, Figures 38, 39, 40 and 47).

In some cases specimens survived 1000 cycles at more than 20 ksi maximum stress.

In several cases, repair welded specimens fractured while the load was being applied.

for the first cycle. In other tests, fractures occurred in areas away from the notched
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Figure 45. F rac tu re  Surface of Welded 2219-TSl  Aluminum Plate 
(Crack in Fusion Line,  75" F) 

Figure. 46. Frac tu re  Surfncc of \Vcldcd 2219-1'Sl l l luminum 1'1:Ltv 
(Crack  in Weld Metal, 75" F) 
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section of the specimen. In one case, during initial fatigue crack extension, a crack

grew from the corner of the weld rather than from the sharp notch. Observation of the

fractured surfaces demonstrates the erratic behavior of the welded specimens.

One specimen (Number 11, Figure 38), with the notch in the heat-affected zone, which

was tested at -423 ° F, shows a large, bean-shaped crack path that appears to have pro-

pagated through the thickness. The roughness of the repair weld metal is clearly shown

in Figure 39.

Fracture surfaces of repair welded specimens containing internal flaws (Figure 40)

show distinctly different characteristics from _ose of the automatic welded specimens.

In one case, the crack propagated in a section completely removed from the rather

severe tungsten inclusion. Higher magnification of several fractured specimens, shown

in Figures 45 and 46, permits closer observation.

The specimen that was notched in the fusion line (Figure 45) and cycled at room

temperature shows a peculiar unsymmetric fatigue growth pattern. It is possible that

such behavior was due to the fact that the fusion zone is not planar but curves through
the thickness of the plate.

In the case of the crack in the center of the weld (Figure 46), a more classic semi-

elliptical fatigue pattern is clearly visible. The heterogeneity of the weld metal is also
visible.

An attempt was made to use the polarized light technique described by Tiffany,

Lorenz, and Hall (Reference 3) for determination of flaw growth. However, those

portions of the flaw growth that were not distinct under white lighting were also not dis-

tinct under polarized lighting.

Convair agrees with Tiffany, Lorenz, and Hall (Reference 3, p 19) that neither of

these methods is reliable for measuring the flaw size and shape.

STRESS INTENSITY RATIO

According to Tiffany, Lorenz, and Hall (Reference 3), the cyclic life of material

containing a flaw is a simple function of the ratio of the initial crack intensity factory

Kii to the critical crack intensity factor Kic (Figure 47). Assuming that the welded
material is reasonably-homogeneous, and that Tiffany, Lorenz, and Hall are correct,

one might conclude that a welded plate (particularly 2219 aluminum) would behave in

the same fashion. Unfortunately, some of the specimens fatigued under this program

did not fail and others failed only after the maximum stress was increased. Neverthe-

less, the variation of the log of the cyclic life with K_ is shown schematically in
Figure 47 for various tests. KIc

87



1.0

LOG CYCLIC LIFE
w

Figure 47. Schematic of Cycle Life Variation

In the cases where the cyclic stress level was raised during testing, the KIi value
was obtained as follows.

1) After fracture, the cracked surface was examined for evidence of crack

growth. In most cases, arrest lines were visible and, by prudent examina-

tion and interpretation, it was possible to relate the arrest line and crack

depth to a particular cycle.

2) The Kii value was calculated by using the crack depth associated with last
arrest line prior to fracture.

In those cases where a fatigue specimen was fractured by a static load, the same

procedure was used for calculation of Kii. However, since failure did not occur due

to fatigue, the true cyclic life is greater than the cycles recorded. This condition is

illustrated by an appropriate symbol (containing a horizontal arrow) on the curve of
Figure 48.

The tests that were performed represented many different conditions (temperature,

stress, etc. ) and locations of cracks. There was little duplication of conditions in the

program. Nevertheless, many of the tests are plotted on the same graph in Figure 48.
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The results are somewhat surprising. For example, at -423 ° F, virtually all of the

points (except the repair weld results) fall on a straight line. Furthermore, it is pos-

sible that a curve could be constructed for the results at -320 _ F. However, at room

temperature, insufficient fractures prevent any sort of accurate curve to be drawn.

Still, one might consider the results obtained by Tiffany, Lorenz, and Hall which show

a curve that could be compatible with some of the results obtained in this program.

At any rate, it appears that for a given Kii/Kic ratio, the 2219-T81 plate can with-

stand less cycles at -423 ° F than at any other temperature, and that this relationship

is somewhat independent of whether the material is welded or not. However, when

several repair welds are made, the results are virtually unpredictable.
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9/CONCLUSIONS AND RECOMMENDATION

1. The yield strength of 2219-T81 sheet and plate decreases significantly when

welded. The reduction of yield strength is much greater than the corresponding re-

duction in ultimate strength.

2. Base metal 2219-T81 sheet and plate toughness increases with a decrease in

temperature. Plane stress and plane strain fracture toughness of the heat-affected

zone increases with a decrease in temperature; the HAZ is less tough than the base

metal but tougher than any other zone. The weld metal region has the lowest fracture

toughness of any of the regions tested.

3. The weld area fracture toughness (plane stress or plane strain) of automatic

welded 2219-T81 sheet or plate decreases significantly between -320 and -423 °F.

4. The behavior of welded 2219-T81 aluminum plate is quite erratic after three

repair welds have been made. The toughness values of repair welded 2219-T81

aluminum can be substantially lower than those of the new welds [ Kic (Repair)

15 ksi ¢_n., Kic (Weld} _ 22 ksi i¢_'n. ] .

5. Cyclic flaw growth rates are generally higher on the weld metal than any other

region tested.

6. At normal operating stresses, the critical flaw size for 2219-T81 parent metal

and welds is quite large (a _ 1/2 inch, 2c _ 2 inches) given the standard 2:1 weld land

buildup.

7. Due to the very low possible toughness of repair welds, it is recommended that

repair welding be kept to a minimum with 2219 aluminum as serious material property

degradation is possible. Note that all repair welds (except for the flaw simulation

tests) on this program meet all government specifications for welds and would be fully

acceptable in an aerospace vehicle.

8. Tungsten inclusions appear to reduce the fracture toughness of the welds quite

considerably and thus should always be removed. Further examination of this prob-
lem would be useful.
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APPENDIX I

NONDESTRUCTIVE TESTING

Nondestructive testing was conducted throughout all phases of the program and

served two basic functions. 1) as an inspection and quality evaluation tool, and 2) as

a means for assessing and monitoring flaw characteristics.

I-l/TEST METHODS

The test methods and procedures used for quality evaluation are outlined below.

PENETRANT TESTING

The 0.063-inch sheet was tested with water-washable fluorescent penetrants.

Very minor indications of isolated pits were seen in Sheets 2-6, 2-8, and 3-4. More

extensive corrosion pits, although not a severe attack, were noted in Sheet 4-6.

Some weld joint preparations were also tested but due to the pre-weld preparation,

which involved fairly heavy scraping, the test was discontinued.

The welds in 0. 063-inch sheet were penetrant tested with solvent-removable, visi-

ble red dye. The penetrant aided significantly in establishing an optimum weld sched-

ule. Selection of the repair weld specimens was, to some extent, based upon the

penetrant results. Porosity was the major defect type noted; however, small crater

cracks were also noted. Care was exercised to assure coverage for a full inch on
either side of the weld centerline.

Both visible red dye and fluorescent penetrants were used to assess the quality of

the weld filler wire. Prior to each weld, a sample of up to 10 feet of wire was run

off and tested. One spool of wire found to contain an intermittent seam was rejected

on the basis of the penetrant test.

The same procedures were followed for the 1.00-inch plates. No significant sur-

face or edge indications were noted. No cracks were found in the welds, although

some surface porosity was identified.

ULTRASONIC TESTING

The 0. 063-inch-thick sheet was tested with an ultrasonic technique in which the

incident energy was passed through the sheet and reflected from a smooth metal plate.

The amount of energy reflected varied according to the homogeneity of the sheet

through which the transmitted energy was directed. This technique is extremely

sensitive to laminar discontinuities. As a gauge of sensitivity, two wires, 0. 012- and
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0. 018-inch diameter, were placed on one end of the sheet. Figure I-1 shows the ultra-

sonic C-scan image of the two wires. No discontinuities were found in any of the

0.063-inch material.

The 1.00-inch plate was ultrasonically tested by conventional pulse-echo immer-

sion techniques. Both longitudinal and 45-degree shear wave techniques were used.

The test sensitivity was established on 2/64-inch-diameter, fiat-bottom drill refer-

ence standard blocks of 7075-T6 aluminum. Several discrete discontinuities, prob-

ably inclusions, were found in 1.00-inchplate parent metal. However, each was noted

and welding arranged such that the position of these defects would be away from the

weld areas. The defects were small, providing reflections less than the reflections

from 5/64-inch diameter fiat-bottom holes in the reference standards.

After welding the 1.00-inch plates, contact ultrasonic tests were eondacted on all

welds. Numerous discontinuities were noted. However, all were correlated with

radiographic indications. The test frequency was 2.25 MHz and both 45- and 60-

degree refracted shear wave angles were used.

RADIOGRAPHIC TESTING

All welds were radiographically inspected. Radiography enabled immediate assess-

ment of the weld schedule. Specimen selection was largely based upon the combined

results of the radiographic and ultrasonic tests. Lengths of welds containing defects

were segregated by the NDT and used for weld repair specimens.

EDDY CURRENT TESTING

Eddy current tests were conducted on one 0.063-inch sheet weld. However, be-

cause of the inherent conductivity changes associated with the weld, the sensitivity at

which practical operation could be obtained was too low to detect any but surface-

connected defects. Subsurface linear porosity was not detectible.
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Figure I-1. Ultrasonic C-Scan, Sheet 2-6 (0.063-Inch), Showing

0. 012- and 0. 018-Inch-Diameter Wires
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I-2/FLAW GROWTH TESTS 

The remainder of the nondestructive testing was associated with flaw growth and 
characterization. Ultrasonic, radiographic, and eddy current tests were  used to 
monitor flaw growth. On some static fracture specimens in room temperature tests, 
penetrant tests were compared with visual examinations. The techniques used and 
results of these tests a re  summarized below. 

ULTRASONIC TESTS ON 0.063-INCH SHEET FLAWS 

A 7Ckdegree shear wedge block (Figure 1-2) was  fabricated so  that lateral movement 
of the transducer could be made. The 0.063-inch center-notched specimens were pre- 
pared prior to entry into the testing machine by finding the position toward and away 
from the notch that provided maximum pulse-echo response from the notch. The block 
was then bonded to the specimen using Eastman 9 10 adhesive. This adhesive was 
found effective to bond the acrylic wedge to the aluminum surface. One disadvantage, 
however, was that, in the removal of the wedge, the edges tended to chip away. Since 
th8 block was intended for subsequent reuse, this breakage, even though of minor ex- 
tent, was undesirable. It was  later found that several of the clear silicone adhesives 
were effective as couplants and did not cause breakage of the block upon removal. The 
silicone adhesives were used for the majority of the tests with the only objectionable 
feature being the one- to two-hour cure time at room temperature. 

Figure 1-2. Shear Wedge Block (70 Degrees) Fabricated to 
Provide Lateral Transducer Adjustment 
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Neither the pulse-echo nor the through-transmission techniques yielded greater than

a 2 to 1 ratio between ultrasonic amplitude change and actual flaw growth. On thicker

specimens (0.250- and 0. 375-inch titanium) previous experience demonstrated a 6 to

1 maximum response ratio. At this order of response, measurements of amplitude

change provide accuracy of about 0.005-inch in determining flaw extension. It is

assumed that the failure to obtain greater response was primarily influenced by the

thinness of the 0.063-inch specimen. Phasing, multiple mode conversion, and wave-

guiding reduce the effectiveness of the transverse wave in thin materials.

With only a 2 to 1 response ratio available from the instrumentation, visual obser-

vation is more accurate. The amplitude of the ultrasonic A-scan signals can only be

measured within about 0.050 inch.

ULTRASONIC TESTING OF ARTIFICIAL FLAWS IN ONE-INCH-THICK SPECIMENS

An ultrasonic through-transmission shear wave test was used to detect crack

propagation during fatigue testing of the 1.00-inch specimens. It consisted of two

transducers on either side of the defect in the weld as shown in Figure I-3.

TRANSMITTER RECEIVER

"_'NWELD

Figure I-3. Schematic of Shear Wave Test Setup

The transmitting transducer sends an angle beam through the thickness of the speci-

men which reflects off the bottom surface and is intercepted by the defect. Since the

beam is wide compared to the size of the defect, part of the beam travels around the

defect and reflects off the top and bottom surfaces before reception by the receiving

transducer. When a crack initiates and propagates from the defect, more of the beam

is intercepted and, therefore, a reduction in signal amplitude results. Conversely,

when the transmitting transducer is converted to the pulse-echo mode, the portion of

the beam that reflects from the defect and subsequently the bottom surface, as shown
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in Figure 1-3, returns to the transmitting transducer. The signal response is the 
opposite, because more of the beam is reflected as a crack enlarges, and an increase 
in reflection amplitude results. 

A specimen undergoing a bending fatigue test is shown in Figure 1-4. The trans- 
mitting and receiving transducers a re  shown both on the top surface. The wedges a re  
bonded to the specimen with silicone rubber adhesive, which stays intact during test. 
Figure 1-5 shows the complete test  setup, which includes the fatigue testing machine 
and the ultrasonic instrumentation. 

It was assumed that the crack would initiate from the defect in the weld. This was 
not the case for one of the specimens 
started from the edge of the specimen and was not detected ultrasonically until it had 

(Specimen 19).  In Specimen 19, the crack 

Figure 1-4. Ultrasonic Transducers for Through-Transmission 
Test In-Situ on the Fatigue Test Machine 
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propagated towards the weld and intercepted the acoustic beam. The effect w a s  a 
decrease in the through-transmission signal from 2 . 3  to 2 . 1  inches amplitude. 

Specimens R6 and R22 were fatigue tested in slow cycle tension-tension with the 
same ultrasonic setup. Both specimens broke during the first cycle at the highest 
load. The cracks propagated too rapidly to enable distinguishing between crack initi- 
ation, crack growth, and failure by the ultrasonic technique, except with automatic 
signal monitoring and recording. It was assumed all three events took place in a few 
seconds at most. 

Of six plate specimens ultrasonically tested while undergoing cyclic fatigue notch 
sharpening, significant data were only obtained from one. This specimen was instru- 
mented with a singlc transducer, and amplitude data were taken in the reflection mode 
only. These data a re  as follows. 

Figure 1-5. Ultrnsonic Test Instrumentation U s e d  During Cyclic Flaw 
Enhrgement on the One-Inch-Thick Plate Specimens 
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Cycles 

1,200 
1 ,865  
9,000 
2,800 

12 , 000 
13,700 
15,000 
17,000 

19,500 
20,170 

18,000 

Reflection Amplitude 
(inches) 

0 .80  
0 .90  
1 .00  
1.00 
1 .25  
1 .30  
1 . 2 5  
1.20 
1.20  
1 .20  
1 .20  

A clzfin te ncrease was  noted with a maximum at 13,700 cycles. At less than 
21,000 cycles, the adhesive bond between the transducer wedge and the specimen 
started to fail. It is probable that the apparent decrease reflected in the data was, 
in fact, an early indication of this bond failure. 

EDDY CURRENT MONITOR FOR FLAW GROWTH IN 0.063-INCH SHEET 

A probe holder was fabricated to provide accurate positioning for the eddy current 
probe. Figure 1-6 shows the holder, which provides X and Y motion transmitted by 
the adjustment screws provided. The probe holder was adhesively bonded to the 

.?* 

x 

Figure 1-6. Eddy Current Probe Holder 
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specimen and adjusted so that the edge of the starter notch just perceptibly influenced

the instrument meter. Both X and Y datum lines were established at this point. The

probe was then moved approximately 1/2-inch to a fixed stop on the holder. This

provided an unaffected area, which could be used to zero or calibrate the instrument.

With the probe in the calibrate area, a reading was taken and established as a refer-

ence point. Just prior to taking readings to assess flaw growth, the instrument was

calibrated to the reference reading on the unaffected material. The probe was then

moved to the original X, Y datum and a reading taken. If the reading was found to

vary from the previous reading, the probe was moved some measured distance along

the X and Y axes until the original reading was obtained. Then AX and Ay were read.

In this manner the tip of an advancing flaw was tracked. The eddy current instrument

used was an impedance tester.

Specimen 2-2-1 was tested as described above and the data follow.

Inches

Cycles X Y

0 0 0

10 0 0

15 0 0

25 0 0

35 0 0

45 0 0

60 0.04 0

70 0.06 0

85 0.06 0

108 0.07 0

1,250 0.10

2,470 0.13

3,250 0.18

5,2OO 0.19

7,000 0.19

0.005

0. 005

0.005

0.010

0.010

The final X measurement of 0.19 inch compares with 0.20 measured optically and

0.205 measured radiographically. The only limiting factor in the precision of the

method is in the manipulating device. Further refinement of the probe holder would

permit noncontacting measurements to be recorded automatically and even establish

feedback to the testing machine to change load or shut down.

RADIOGRAPHIC TESTING FOR FLAW ENLARGEMENT STUDIES

High-resolution radiographs on single-emulsion Eastman Kodak Type R film pro-

vided images that could be measured within less than 0. 005 inch. On the center-

notched sheet, radio-opaque putty carefully inserted in the notch afforded much more

accurate measurements.
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Measurements were made radiographically at periodic intervals on one of the room-

temperature specimens (2-2-1). Radiographic measurements were in agreement with

visual observations within 0. 020 inch. Two of the 0. 063-inch specimens with part-

through or "thumb-nail,, notches were radiographically tested. On parent metal Speci-

men CF1 no crack extension was noted. Figure I-7 shows the measurements taken

from the radiograph of Specimen CF2. These cracks were not visually apparent.

A radiograph of Specimen 3-4-2, made at 830 cycles, proved an interesting subject

for microdensitometry. Crack extensions measured on the radiograph were 0. 530 and

0. 350 inch compared with 0.468 and 0. 305 inch measured visually. The longer crack

lay in an almost vertical plane for about 0. 130 inch, then transitioned to a plane esti-

mated at about 30 degrees from vertical. Figure I-8 is a reproduction of the radio-

graph in that area. Two microdensitometric scans were made, one at each arrow.

Figure I-8 shows the recordings that resulted.

Figure I-9 is a scan of a radiograph from Specimen 20, a 1.00-inch plate weldment

with the flaw in the fusion line. Note the indication from the opposite edge of the weld.

Figure 1-10 is a scan across the part-through notch of Specimen CF2. Note the

sharp spike corresponding with an almost-through crack.

Figure 1-11 is a scan across Specimen R12, a 1.00-inch-thick specimen notched

in the heat-affected zone. Note the symmetrical shape across the width of the weld,

which had been machined flush.

These scans illustrate the feasibility of densitometric scanning as a potential means

of automatically interpreting films.

Another contribution from radiography was initiated as a result of examination of

the post-fracture appearance of Specimen B3. The protruding tongue or lip led to

some conjecture whether the 1.00-inch plate might not be affected by a condition noted

previously by Convair on other programs involving 2219 alloy. A 0. 500-inch-thick

0.010

0.010 IN{

0.005 INCH

Figure I-7. Measurements From Radiograph of Specimen CF2

(Looking Down on the Specimen)
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plate of 2219-T81 had exhibited a band through the center that wasdeficient of copper.

An X-ray fluorescence analysis revealed copper variation of greater than 1 percent,

with the least amount in the exact center plane. To test for this condition on this

program, three cut-out sections remaining from the "dog-bone" machining were

selected. One was from base metal Specimen B3, in which the odd fracture occurred,

and the other two from Specimens B2 and B6, which failed in a "normal" manner. An

"end-on" radiograph of all three pieces in simultaneous exposure revealed a strip of

slightly higher film density about 1/4-inch wide in the exact center of B3. B2 and B6

did not contain any evidence of this condition. Figure 1-12 shows the microdensito-

metric scan, which reveals the difference from B2 and B6. The 0.04 D shown on

the B3 specimen is indicative of copper deficiency in and about the center plane of the

original plate.
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Figure 1-8. Microdensitometric Scans of Cracks in Specimen 3-4-2 
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Figure 1-10. Microdensitometric Scan 

1-15 



1-16 



I
IlSN3O

N

CO

C.) .,,,.,I

°i..,.l

o_

_1 m O

!

'"4 _

N N

d
I

%



DISTRIBUTION

National Aeronautics and Space Administration

Lewis Research Center

21000 Brookpark Road

Cleveland, Ohio 44135

Attention: Contracting Officer, MS 500-210

Liquid Rocket Technology Branch, MS 500-209

Technical Report Control Office, MS 5-5

W. E. Roberts, MS 3-17

Technology Utilization Office, MS 3-16

D. L. Nored, MS 500-209

AFSC Liaison Office, MS 4-1

T. Moore, MS 105-1

Library

W. Russell, MS 14-1

Office of Reliability & Quality Assurance, MS 500-203

Richard H. Kemp, MS 49-1

J. E. Srawley, MS 105-1

R. Swallow, MS 501-2

W. Brown, MS 105-1

National Aeronautics and Space Administration

Washington, D.C. 20546

Attention: Code MT

RPX

RPL

SV

RV-2

Scientific and Technical Information Facility
P.O. Box 33

College Park, Maryland 20740

Attention: NASA Representative

Code CRT

National Aeronautics and Space Administration

Ames Research Center

Moffett Field, California 94035

Attention: Library

Copies

1

8

1

1

1

1

2

1

2

1

1

1

1

1

1

1

2

2

1

1

D-1



National Aeronautics and SpaceAdministration
Flight Research Center

P.O. Box 273

Edwards, California 93523

Attention: Library

National Aeronautics and Space Administration

Goddard Space Flight Center

Greenbelt, Maryland 20771

Attention: Library

National Aeronautics and Space Administration

John F. Kennedy Space Center

Cocoa Beach, Florida 32931

Attention: Library

National Aeronautics and Space Administration

Langley Research Center

Langley Station

Hampton, Virginia 23365

Attention: Library

National Aeronautics and Space Administration

Manned Spacecraft Center

Houston, Texas 77001

Attention: Library

National Aeronautics and Space Administration

George C. Marshall Space Flight Center

Huntsville, Alabama 35812

Attention: Library

Keith Chandler, R-P&VE-PA

Robert Hoppes, R-ME-MW

National Aeronautics and Space Administration

Western Operations Office

150 Pico Boulevard

Santa Monica, California 90406

Attention: Library

1

1

1

1

D-2



Jet Propulsion Laboratory
4800Oak Grove Drive
Pasadena, California 91103

Attention: Library

Office of the Director of DefenseResearch & Engineering
Washington, D.C. 20301

Attention: Dr. H. W. Schulz, Office of Asst. Dir.
(Chem. Technology)

DefenseDocumentation Center

Cameron Station

Alexandria, Virginia 22314

Arnold Engineering Development Center

Air Force Systems Command

Tullahoma, Tennessee 37389

Attention: AE OIM

Advanced Research Projects Agency

Washington, D.C. 20525

Attention: D.E. Mock

Air Force Materials Lab.

Wright-Patterson Air Force Base

Dayton, Ohio 45433

Attention: M. Knight (MAAM)

Sidney Davis (MAAM)

Air Force Rocket Propulsion Laboratory (RPR)

Edwards, California 93523

Air Force Rocket Propulsion Laboratory

Edwards, California 93523

Attention: W.F. Payne

Air Force FTC (FTAT-2)

Edwards Air Force Base, California 93523

Air Force Office of Scientific Research

Washington, D.C. 20333

Attention: SREP, Dr. J. F. Masi

D-3

1

1

1



Commanding Officer

U.S. Army Research Office (Durham)

Box CM Duke Station

Durham, North Carolina 27706

U.S. Army Missile Command

Redstone Scientific Information Center

Redstone Arsenal, Alabama 35808

Attention: Chief, Document Section

Commander

U.S. Naval Ordnance Test Station

China Lake, California 93557

Attention: Code 45

Commanding Officer

Office of Naval Research

1030 E. Green Street

Pasadena, California 91101

Director (Code 6180)

U.S. Naval Research Laboratory

Washington, D.C. 20390

Attention: H.W. Carbart

J. M. Krafft (Mechanics)

U.S. Atomic Energy Commission
Technical Information Services

Box 62

Oak Ridge, Tennessee

Attention: A.P. Huber, Code ORGDP

Box P

Air Force Aero Propulsion Laboratory

Research & Technology Division

Air Force Systems Command

United States Air Force

Wright-Patterson AFB, Ohio 45433

Attention: APRP (C. M. Donaldson)

1

1

D-4



Aerojet-General Corporation
P.O. Box 296
Azusa, California 91703

Attention: Librarian
E. J. Morgan

Aerojet-General Corporation
11711 South Woodruff Avenue

Downey, California 90241

Attention: F.M. West, Chief Librarian

Aerojet-General Corporation

P.O. Box 1947

Sacramento, California 95809

Attention: Technical Library, 2484-2015A

C. E. Hartbower

Aerospace Corporation

P.O. Box 95085

Los Angeles, California 90045

Attention: J.G. Wilder, MS-2293

Library- Documents

ARO, Incorporated

Arnold Engineering Development Center

Arnold AF Station, Tennessee 37389

Attention: Dr. B. H. Goethert, Chief Scientist

Atlantic Research Corporation

Shirley Highway & Edsall Road

Alexandria, Virginia 22314

Attention: A. Scurlock

Security Office for Library

Battelle Memorial Institute

505 King Avenue

Columbus, Ohio 43201

Attention: Report Library, Room 6A

R. E. Monroe, Materials Joining Division

1

1

1

D-5



Battelle-Northwest
3000StevensDrive
P.O. Box 999
Richland, Washington 99352

Attention: R.G. Hoagland

Beech Aircraft Corporation
Boulder Facility
Box 631
Boulder, Colorado

Attention: J.H. Rodgers

Bell Aerosystems, Inc.
Box 1
Buffalo, NewYork 14205

Attention: T. Reinhardt

The BoeingCompany
Aero SpaceDivision
P.O. Box 3707
Seattle, Washington 98124

Attention: Ruth E. Peerenboom(1190)
C. W. Tiffany
D. T. Lovell, MS 88-03

Carnegie Institute of Technology
Department of Civil Engineering

Pittsburgh, Pennsylvania

Attention: Robert B. Anderson

Chemical Propulsion Information Agency

Applied Physics Laboratory

8621 Georgia Avenue

Silver Spring, Maryland 20910

Chrysler Corporation

Missile Division

Warren, Michigan

Attention: John Gates

1

D-6



Chrysler Corporation

Space Division

New Orleans, Louisiana

Attention: Librarian

Curtiss-Wright Corporation

Wright Aeronautical Division

Woodridge, New Jersey

Attention: G. Kelley

University of Denver

Denver Research Institute

P.O. Box 10127

Denver, Colorado 80210

Attention: Security Office

Douglas Aircraft Company, Inc.

Santa Monica Division

3000 Ocean Park Blvd.

Santa Monica, California 90405

Attention: B. Whiteson

D. A. Eitman

R. A. Rawe

Fairchild Stratos Corporation

Aircraft Missiles Division

Hagerstown, Maryland

Attention: J.S. Kerr

Convair division of General Dynamics

P.O. Box 1128

San Diego, California 92112

Attention: Library & Infomation Services (524-10)

W. E. Witzell, Mat's. Res. Group

J. E. Christian, MS 572-10

General Electric Company

Flight Propulsion Lab. Department

Cincinnati 15, Ohio

Attention: D. Suichu

1

1

1

1

1

1

1

D-7



Grumman Aircraft Engineering Corporation

Bethpage, Long Island,

New York

Attention: Library

Hercules Powder Company

Allegheny Ballistics Laboratory

1_. O. Box 210

Cumberland, Maryland 21501

Attention: Library

IIT Research Institute

Technology Center

Chicago, Illinois 60616

Attention: K.E. Haler

Kidde Aero-Space Division

Walter Kidde & Company, Inc.

675 Main Street

Belleville 9, New Jersey

Attention: R.J. Hanville,

Director of Research Engineering

Lockheed Missiles & Space Company

P.O. Box 504

Sunnyvale, California

Attention: Richard E. Lewis, Bldg. 204

W. Sterbentz, Bldg. 537

Technical Information Center

Lockheed-California Company

Burbank, California

Attention: R.O. Enearl

Lockheed

P.O. Box

Redlands,

Attention:

Propulsion Company

111

California 923 74

Miss Belle Berlad, Librarian

1

1

1

D-8



LockheedMissiles & Space Company

Propulsion Engineering Division (D.55-11)

1111 Lockheed Way

Sunnyvale, California 94087

Marquardt Corporation

16555 Saticoy Street

Box 2013 - South Annex

Van Nuys, California 91404

Attention: Librarian

Martin-Marietta Corporation

Denver Division

Denver, Colorado 80201

Attention: F.R. Schwartzberg

McDonnell Aircraft Corporation

P.O. Box 6101

Lambert Field, Missouri

Attention: R.A. Herzmark

North American Aviation, Inc.

Space & Information Systems Division

12214 Lakewood Boulevard

Downey, California 90242

Attention: Technical Information Center, D/096-722 (AJ01)

Northrop Space Laboratories

1001 East Broadway

Hawthorne, California

Attention: Dr. William Howard

Purdue University

Lafayette, Indiana 47907

Attention: Technical Librarian

Republic Aviation Corporation

Farmingdale, Long Island
New York

Attention: Dr. William O' Donnell

1

1

1

D-9



Rocket ResearchCorporation
520 South Portland Street

Seattle, Washington 98108

Rocketdyne, Division of

North American Aviation, Inc.

6633 Canoga Avenue

Canoga Park, California 91304

Attention: Library, Department 596-306

Rohn and Haas Company

Redstone Arsenal Research Division

Huntsville, Alabama 35808

Attention: Librarian

Space-General Corporation

777 Flower Street

Glendale, California

Attention: C.E. Roth

Thiokol Chemical Corporation

Redstone Division

Huntsville, Alabama

Attention: John Goodloe

United Aircraft Corporation

Corporation Library

400 Main Street

East Hartford, Connecticut 06118

United Aircraft Corporation

United Technology Center

P.O. Box 358

Sunnyvale, California 94088

Attention: Library

Vought Astronautics

Box 5907

Dallas 22, Texas

Attention: Warren C. Trent

1

1

D-10



Frankford Arsenal
Philadelphia, Pennsylvania

Attention: D.F. Armiento, SMOFA-1324

Franklin Research Institute
Benjamin Franklin Parkway
Philadelphia, Pennsylvania

Attention: C. Hays

19103

Harvey Engineering Laboratories

19200 South Western Avenue

Torrance, California

Attention: Paul Anderson, R&D Division

Southwest Research Institute

8500 Calebra Road

San Antonio, Texas 78206

Attention: E.B. Norris

Syracuse University Research Institute

Department of Metallurgy

Syracuse, New York

Attention: H.W. Liu

Volker Weiss

U.S. Steel Corporation

Applied Research Laboratory

Monroeville, Pennsylvania 15146

Attention: T.L. Boblenz, MS 62

Sciaky Brothers's, Inc.

4915 West 67th Street

Chicago, Illinois 60638

Attention: Eugene P. Vilkos, Fusion Welding Lab.

A. O. Smith Corporation

Milwaukee, Wisconsin 53201

Attention: Paul W. Ramsey, Welding Research and Development

1

D-11



Applied Mechanics Research Laboratory

U.S. Army Materials Research Agency

Watertown, Massachusetts 02172

Attention: Robert J. Morrissey

D-12


